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Preview
MATH 5633 Loss Model I aims to equip students with the mathematical foundations for
the Exam FAM-S offered by the Society of Actuaries (SOA). As suggested by the name of
the examination, this course will focus on the construction of actuarial models associated
with short-term insurance products, such as health, property and casualty (P&C), group
insurance, and travel insurance etc. In this chapter, we shall go over the basic probability
tools that are essential for this course.

Key topics in this chapter:
1. Probability measures and random variables;

2. Distributional quantities, such as raw moments, central moments, and percentiles;

3. Moment generating functions and probability generating functions;

4. Conditional distributions and conditional expectations

1 Probability
We consider a set Ω, called the sample space, which contains all the possible outcomes of
a random experiment. A probability is a measure of likelihood that a specific event will
occur.

Definition 1.1 A probability measure P is a function defined on subsets of the sample
space Ω such that the following properties are satisfied:

1. for any A ⊂ Ω, 0 ≤ P(A) ≤ 1;
2. P(∅) = 0 and P(Ω) = 1;
3. for any A,B ⊂ Ω with A ∩B = ∅, P(A ∪B) = P(A) + P(B).

The following useful properties can be deduced from the definition of probability, whose
proof are left as an exercise.

1. (Inclusion-Exclusion) For any A,B ⊂ Ω, P(A ∪B) = P(A) + P(B)− P(A ∩B).
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2. (Complementary Event) For the complementary event Ac of A, where Ac := Ω\A, it
holds that P(Ac) = 1− P(A).

3. (Monotonicity) For any sets A ⊂ B, P(A) ≤ P(B).

4. (Law of Total Probability) Let {Bi}ni=1 be a collection of mutually exclusive and ex-
haustive events, i.e., Bi ∩ Bj = ∅ for i ̸= j, and ∪n

i=1Bi = Ω. Then, for any A ⊂ Ω,
P(A) =

∑n
i=1 P(A ∩Bi).

Remark 1.1. (Impossible versus zero probability) An event A ⊂ Ω with zero probability (i.e.,
P(A) = 0) does NOT mean A is impossible to happen. For example, consider a random
experiment of picking a number from the interval Ω = [0, 1] uniformly. The probability of
picking any given number would be zero. However, you will end up picking a specific number,
despite the probability of getting it is zero. This is because the sample space Ω contains
a continuum of possible outcomes. Similarly, P(A) = 1 does not mean A must occur. In
measure theory, we say that A occurs almost surely.

Example 1.1 A survey indicates that 60% of citizens in Westeros have purchased health
insurance products, 45% of them have purchased variable annuity products, and all of
them have purchased at least one of the above two products. Find the proportion of
citizens in Westeros who have purchased a variable annuity but not a health insurance.
Solution:
Let A be the event of purchasing health insurance products, and B be the event of
purchase a variable annuity. We know that P(A) = 0.6, P(B) = 0.45, and P(A∪B) = 1.
We are to find P(Ac ∩B). By inclusion-exclusion,

1 = P(A ∪B) = P(A) + P(B)− P(A ∩B) = 0.6 + 0.45− P(A ∩B),

which gives P(A ∩B) = 0.05. Hence,

P(Ac ∩B) = P(A)− P(A ∩B) = 0.6− 0.05 = 0.55.

2 Conditional Probability
Conditional probability describes the likelihood of occurrence of an event A given the oc-
currence of another event B. When the two events A and B are related, the occurrence of
B would change the probability of the occurrence of A. For instance, the probability that a
25-year old male who has lung cancer could be as low as 2%. However, if we know that the
male is a smoker, the probability could be doubled.
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Definition 2.1 Suppose that A,B ⊂ Ω with P(B) > 0. Then, the conditional prob-
ability of A given B is defined as

P(A|B) :=
P(A ∩B)

P(B)
.

Given that B has occurred, we need to confine ourselves to the smaller population set B,
and searches for the outcome in A therein. Hence, in the definition, we are using P(B) as a
numeraire in the denominator, and P(A ∩B) as the occurrence probability within B.

If the occurrence of B does not change the probability of A, then A and B are said to be
independent.

Definition 2.2 The events A and B are said to be independent if

P(A ∩B) = P(A)P(B).

Remark 2.1.

1. If P(B) > 0, then A and B are independent if P(A|B) = P(A).

2. Any set A ⊂ Ω and the empty set ∅ are independent, since P(A)P(∅) = 0 = P(A∩∅).

The notion of independence can be generalized to any finite collection of sets.

Definition 2.3 Consider a collection of sets A = {A1, A2, . . . , An}. The collection is
said to be

1. pairwise independent if, for any i ̸= j,

P(Ai ∩ Aj) = P(Ai)P(Aj);

2. mutually independent if, for any sub-collection {Ai1 , . . . , Aik} of A, where k ≤ n,

P

(
k⋂

j=1

Aij

)
=

k∏
j=1

P(Aij). (1)

Mutual independence implies pairwise independence, since any sub-collection consisting of
two sets (k = 2) in A satisfies (1). However, the converse is in general NOT true.

The following formulas on conditional probabilities are useful:
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1. (Law of Total Probability) For any A ⊂ Ω, and any exhaustive and mutually
exclusive events {Bi}ni=1 with P(Bi) > 0 for i = 1, 2, . . . , n, we have

P(A) =
n∑

i=1

P(A|Bn)P(Bn). (2)

2. (Bayes Formula) For any A,B ⊂ Ω with P(A),P(B) > 0,

P(A|B) =
P(B|A)P(A)

P(B)
. (3)

Equation (2) can be derived by using the law of total probability on p.1, and the defini-
tion of conditional probability; the Bayes formula (3) is an immediate consequence of the
definition of conditional probability. In particular, the Bayes formula is fundamental in de-
ducing the posterior probability in statistics and credibility theory.

Example 2.1 An insurer classifies drivers into three risk classes, Class 1 (low risk),
Class 2 (medium risk), and Class 3 (H). The probability that a driver will be involved
in a car accident in one year from each of the three risk classes are respectively 0.005 for
Class 1, 0.01 for Class 2, and 0.2 from Class 3. Suppose that the insurer has a portfolio
consisting of 90% of policyholders from Class 1, 7% from Class 2, and 3% from Class
3. It is known that a policy had been involved in a car accident last year. Find the
probability that the policyholder is from Class 2.
Solution:
Let A be the event of having a policy had been involved in an accident last year. We are
asked to compute P(Class 2|A). By the information, we can draw the following table:

Class i 1 2 3
P(A|Class i) 0.005 0.01 0.2
P(Class i) 0.9 0.07 0.03

P(A|Class i)P(Class i) 0.0045 0.0007 0.006
By Equation (2), we have

P(A) =
3∑

i=1

P(A|Class i)P(Class i) = 0.0045 + 0.0007 + 0.006 = 0.0112.

By Bayes formula (Equation (3)), we have

P(Class 2|A) = P(A|Class 2)P(Class 2)

P(A)
=

0.0007

0.0112
= 0.0625.
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3 Random Variables and Distribution Functions
Random variables are mappings from the set of possible outcomes of a random event to a
real number for numerical calculations.

Definition 3.1 A function X : Ω 7→ R is called a random variable.

In this course, we will study random variables to model frequency, severity, and aggregate
loss of short-term insurances:

• Frequency Models: number of claims received within a planning horizon;

• Severity Models: the size/loss of an individual claim;

• Aggregate Loss Models: aggregating the losses over all claims received.

Example 3.1 Consider the random experiment of flipping a coin twice, with H denotes
getting a head, and T denotes getting a tail. Then, Ω = {ω1 = HH,ω2 = HT, ω3 =
TH, ω4 = TT}. Consider the following two examples of random variables:

1. Let X be the random variable of number of heads obtained. Then X(ω1) = 2,
X(ω2) = X(ω3) = 1, and X(ω4) = 0.

2. Let Y be the random variable such that Y = 1 if there is at least one head in the
two flips, and Y = 0 otherwise. Then Y (ω1) = Y (ω2) = Y (ω3) = 1, and Y (ω4) = 0.
If we let A ⊂ Ω be the set containing the outcomes with at least one head. Then
A = {ω1, ω2, ω3}, and we can write Y as

Y (ω) = 1A(ω) =

{
1, if ω ∈ A,

0, otherwise.
.

Y is also called an indicator random variable. This type of variables is very useful
in probability theory.

Given a random variable X, we want to ask questions about how likely X would fall within a
certain range A ⊂ R. For example, what is the probability that a claim will be received from
an insurance policy? What is the probability that the claim size would exceed 10 thousands?
Knowing the distributions of the frequency and severity variables allows insurers perform
pricing and reserving adequately. In particular, the distribution of a random variable X can
be characterized by the following functions.

Definition 3.2 The cumulative distribution function (cdf) FX of a random variable
X, and the survival function SX , are defined respectively by

FX(x) := P(X ≤ x) and SX(x) := P(X > x) = 1− FX(x).
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Why do cdf and survival function matter?

• Characterization: the entire distribution of X can be recovered from FX .

• Risk management and reserving:

– Quantile reserve: the fund we should keep such that the probability of being able
to cover a loss X is high (say 99%);

– the tail (heavy vs. light) of the distribution tells us the likelihood of extreme events.

• Transformations (Chapter 2)

– The distribution of Y = g(X) could be derived from the cdf FX of X;

– X can be simulated by the inverse transform sampling F−1
X (U), where U is uni-

formly distributed on [0, 1].

The following characterizes a cdf of a random variable, whose proof is out of the scope of
our course.

Theorem 3.1 A function F (x) is a cdf if and only if the following conditions hold:
1. F is non-decreasing: F (a) ≤ F (b) if a ≤ b;
2. limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1;
3. F is right-continuous: limx→x+

0
F (x) = F (x0).

Depending on the support of X, we mainly classify random variables into the following
classes in this course:

1. Discrete Random Variables

• X is said to be a discrete random variable if its support1 Supp(X) is countable,
e.g., Supp(X) = N, {1, 2, 3} etc.

• The distribution of a discrete random variable X can be expressed by its probability
mass function (pmf):

pX(x) = px = P(X = x), x ∈ Supp(X),

which satisfies

(a) 0 ≤ px ≤ 1 for all x ∈ Supp(X);

(b)
∑

x∈Supp(X) px = 1.

• For A ⊂ R, the probability that X ∈ A is given by

P(X ∈ A) =
∑
x∈A

px.

1Roughly speaking, the support of a distribution is the set Supp(X) such that its pmf/pdf is non-zero.
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• Some common discrete distributions: Bernoulli, Binomial, Negative Binomial, etc.
We will look at them in details when we study frequency models.

2. Continuous Random Variables

• The support Supp(X) of a continuous random variable X is uncountable (contin-
uum), e.g., Supp(X) = R, [0, 1] etc.

• The distribution of a continuous random variable X can be expressed by its proba-
bility density function (pdf):

fX(x) :=
d

dx
FX(x) = F ′

X(x),

where FX is the cdf of X, such that

(a) fX(x) ≥ 0 for all x ∈ Supp(X);

(b)
∫

Supp(X)
f(x)dx = 1.

• Notice that fX(x) does NOT indicate the probability of X = x. It only gives the
likelihood of X falling in a neighbourhood of x. Looking it in an infinitesimal way,
given a small number dx,

fX(x)dx ≈ P(x < X < x+ dx).

Since fX(x) itself is NOT a probability, we do not require fX(x) ≤ 1.

• For A ⊂ R, the probability that X ∈ A is given by

P(X ∈ A) =

∫
A

fX(x)dx.

For this reason, P(X = a) = 0 for any a ∈ R, since
∫
{a} f(x)dx =

∫ a

a
fX(x)dx = 0.

• Some common continuous distributions: Uniform, Gamma, Gaussian, Pareto, Expo-
nential, Beta, etc. We will look at them in details when we study severity models.

3. Mixed/Compound Random Variables

• A mixed random variable consists of a discrete part, and a continuous part. It is
more commonly seen for aggregate loss models.

• It is not uncommon that no claims would be received for an insurance policy within
a short period of time, and if it does receive claims, the claim size can be modelled
by continuous distribution. Hence, the random variable of aggregate claim size S
has a non-zero probability at 0, P(S = 0) > 0; and the distribution can be expressed
by a density function for loss s > 0.
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• The Tweedie distribution is a class of distribution that includes mixed distributions,
which have positive mass at 0.

Example 3.2 Consider a continuous random variable X with pdf

fX(x) =


A

xα+1
, if x ≥ B,

0, if x < B,

where α,A,B > 0.
(a) Find the relationship between A and B such that fX is a valid pdf.
(b) If α = B = 2, find the probability P(3 < X < 5).

Solution:
(a) fX is a valid pdf only if it integrates to 1. Hence,

1 =

∫ ∞

B

A

xα+1
dx = − A

αxα

∣∣∣∣∞
B

=
A

αBα
.

Hence, A = αBα

(b) By (a), we know that A = 2(2)2 = 8. Hence,

P(3 < X < 5) =

∫ 5

3

8

x3
dx = − 4

x2

∣∣∣∣5
3

=
64

225
.

Example 3.3 Find the cdf of the following random variables:
(a) A discrete random variable X with pmf

P(X = x) =


0.2, if x = 0;

0.4, if x = 1;

0.1, if x = 3;

0.3, if x = 6.

(b) A mixed random variable Y with P(Y = 0) = 0.3, P(Y = 10) = 0.2, and for
y ∈ (0, 10), it admits the following density function:

fY (y) =
3
√
10y

400
, 0 < y < 10.
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Solution:
(a) The cdf of X is given by

FX(x) =



0, if x < 0;

0.2, if 0 ≤ x < 1;

0.2 + 0.4 = 0.6, if 1 ≤ x < 3;

0.2 + 0.4 + 0.1 = 0.7, if 3 ≤ x < 6,

0.2 + 0.4 + 0.1 + 0.3 = 1, if x ≥ 6.

(b) For y ∈ (0, 10), we have∫ y

0

fY (z)dz =

∫ y

0

3
√
10z

400
dz =

√
10y

3
2

200
.

Hence, the cdf of Y is given by

FY (y) =



0, if y < 0;

0.3 +

√
10y

3
2

200
, if 0 ≤ y < 10;

0.3 +

√
10× 10

3
2

200
+ 0.2 = 1, if y ≥ 10.

4 Distributional Quantities of Random Variables
This section is devoted to reviewing some basic distributional quantities of a random variable.
In particular, we will be looking at the expected values, central moments, and percentiles.
These values allow us to examine the central tendency and variability of a random vari-
able.

4.1 Expected Values, Moments and Central Moments

The expected value of a random variable X gives the average value of X weighted by its
distribution. Moments and central moments are expected values of functions of X.

1. Expected Value:

• The expected value of X, denoted by µ or E[X], is defined as
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µ = E[X] :=


∫ ∞

−∞
xfX(x)dx, if X is continuous;∑

x

xpX(x), if X is discrete.

• If E[X] exists as a finite number, we say that X is integrable.

• Expected value is a linear operator : for any α, β ∈ R, and any integrable random
variables X, Y ,

E[αX + βY ] = αE[X] + βE[Y ].

• In general, for any function g(x),

E[g(X)] :=


∫ ∞

−∞
g(x)fX(x)dx, if X is continuous;∑

x

g(x)pX(x), if X is discrete.

2. Moments:

• For k = 1, 2, . . . , the k-th moment of X, denoted by µ′
k, is the expected value of Xk:

µ′
k := E[Xk].

• By Jensen’s inequality, one can show that Xk+1 is integrable implies Xk is integrable.

3. Central Moments:

• The k-th central moment of X, denoted by µk, is the expected value of (X − µ)k:

µk := E[(X − µ)k].

• The second central moment of X is also known as variance:

Var[X] := µ2 = E[(X − µ)2] = E[X2]− E2[X] = µ′
2 − µ2.

For any α, β ∈ R, we have

Var[αX + β] = α2Var[X].
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A few useful formulas concerning expected values are listed below:

1. For any set A ⊂ R,
P(X ∈ A) = E[1{X∈A}], (4)

where 1{x∈A} is the indicator function: 1{x∈A} = 1 if x ∈ A, and 0 otherwise.
2. For any positive random variable X,

E[X] =

∫ ∞

0

SX(x)dx. (5)

Proof.

1. For simplicity, we only consider X being a continuous random variable with density
fX . The first statement can be proven by the writing the probability in terms of an
integral:

P(X ∈ A) =

∫
A

fX(x)dx =

∫ ∞

−∞
1{x∈A}fX(x)dx = E[1{X∈A}].

2. Using Equation (4), we know that

SX(x) = P(X > x) = E[1{X>x}].

Hence, by Fubini’s theorem,∫ ∞

0

SX(x)dx =

∫ ∞

0

E[1{X>x}]dx = E
[∫ ∞

0

1{X>x}dx

]
= E

[∫ X

0

dx

]
= E[X].

Equation (5) can be further generalized into higher order moments, whose proof is left as an
exercise:

Theorem 4.1 Let α > 0 and X be a positive random variable. If Xα is integrable,

E[Xα] =

∫ ∞

0

αxα−1SX(x)dx.

Example 4.1 Compute the expected value and the variance for the random variables
X, Y in Example 3.3.
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Solution:
(a) E[X] = 0× 0.2 + 1× 0.4 + 3× 0.1 + 6× 0.3 = 2.5,

E[X2] = 02 × 0.2 + 12 × 0.4 + 32 × 0.1 + 62 × 0.3 = 12.1.
Hence, Var[X] = E[X2]− E2[X] = 12.1− 2.52 = 5.85.

(b) For the random variable Y ,

E[Y ] = 0× P(Y = 0) +

∫ 10

0

yfY (y)dy + 10× P(Y = 10)

=

∫ 10

0

3
√
10y

3
2

400
dy + 10× 0.2

= 3 + 2 = 5,

E[Y 2] = 02 × P(Y = 0) +

∫ 10

0

y2fY (y)dy + 102 × P(Y = 10)

=

∫ 10

0

3
√
10y

7
2

400
dy + 102 × 0.2

=
150

7
+ 20 =

290

7
.

Therefore, Var[X] = 290
7

− 52 = 115
7

.

We end this subsection by listing some useful distributional quantities:

Quantity Definition Symbol
Variance µ2 σ2

Standard deviation √
µ σ

Coefficient of variation (C.V.) σ/µ /
Skewness µ3/σ

3 γ1
Kurtosis µ4/σ

4 γ2

Table 1: Some other distributional quantities

A few remarks on the quantities introduced in Table 1:

• Skewness is a measure of asymmetry : a symmetric distribution has a zero skewness,
and a distribution with a positive (resp. negative) skewness has a long right (resp. left)
tail.

• Kurtosis of a distribution is a measure of heaviness of its tail (tailedness). A random
variable with a high (resp. low) kurtosis tends to have heavy (light) tails, or outliers.

• C.V., skewness and kurtosis are unit-less and scale-invariant, i.e., the kurtosis and
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skewness of X and cX are the same for any c > 0.

4.2 Percentiles

Percentiles of a distribution is the inverse of its cdf.

Definition 4.1 For p ∈ (0, 1), the 100p-th percentile of a random variable X is defined
as

xp := inf{x : FX(x) ≥ p}.

A few remarks on percentiles:

• The 100%p-th percentile is also called the p-quantile.

• We can check whether an unknown distribution is given by a candidate distribution by
computing the percentiles. This can be done by comparing the empirical percentiles
of the unknown distribution, and the theoretical percentiles of the known candidate
via a qq-plot.

• When FX is strictly increasing and continuous, xp = F−1
X (p). Otherwise, the inverse

of FX may not exist. In general, we (only) have FX(xp) ≥ p.

• Percentile is a risk measure, which is equivalent to the Value-at-Risk. We shall come
back to it when we study risk measures.

Example 4.2 Find the 30-th, 60-th, and the 90-th percentile of the random variables
X and Y in Example 3.3.
Solution:

(a) FX(x) < 0.3 for 0 ≤ x < 1, and FX(1) = 0.6 > 0.3. Hence, x0.3 = 1. This also
implies that x0.6 = 1. Finally, FX(x) = 0.7 < 1 for x < 6, and FX(6) = 1 > 0.9.
Hence, x0.9 = 6.

(b) FY (y) = 0 for y < 0, and FY (0) = 0.3. Hence, y0.3 = 0. To find the 60-th percentile,
by setting

0.6 = FY (y0.6) = 0.3 +

√
10y

3
2
0.6

200

⇒ y0.6 =

(
200(0.6− 0.3)√

10

) 2
3

=
3
√
360 = 7.1138 ∈ (0, 10).

Finally, limy→10− FY (y) = 0.8 < 0.9, and FY (10) = 1 > 0.9. Therefore, y0.9 = 10.
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5 Generating Functions
In this section, we introduce two generating functions – the moment generating function
(mgf), and the probability generating function (pgf). These functions are very useful
tools in this course:

1. They characterize the distribution of a function: two random variables with the same
generating functions must have the same distribution.

2. They can be used to compute moments/probabilities.

3. They allow simple characterization of compound distributions when we study frequency
and aggregate risk models.

5.1 Moment Generating Functions

Definition 5.1 The moment generating function (mgf) of a random variable is
defined by

MX(t) := E[etX ], t ∈ R.

Remark 5.1. If X is a continuous random variable, the mgf of X is equivalent to the two-sided
Laplace transform of its density function fX .

As suggested by its name, the mgf of X can be used to compute moments by taking its
derivatives.

Theorem 5.2 For k ∈ N and a random variable X,

µ′
k = E[Xk] = M

(k)
X (0) =

dk

dtk
MX(t)

∣∣∣∣
t=0

.

Proof. Under some regularity conditions2, we can switch the order of differentiation and
expectation. Hence,

M
(k)
X (t) =

dk

dtk
MX(t) =

dk

dtk
E[etX ] = E

[
dk

dtk
etX
]
= E[XketX ].

Therefore,
M

(k)
X (0) = E[Xke0×X ] = E[Xk].

2See the Leibniz integral rule, for example.
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5.2 Probability Generating Functions

If X is a discrete random variable, the pgf could be more useful than a mgf. Indeed, the pgf
can be obtained from the mgf by a change of variable.

Definition 5.2 The probability generating function (pgf) of a random variable is
defined by

PX(t) := E[tX ].

Notice that the mgf and the pgf are related by MX(t) = PX(e
t). If X is a discrete random

variable taking values in N0 = {0, 1, 2, . . . }, we can write its pgf as

PX(t) = E[tX ] =
∞∑
k=0

tkpk = p0 + tp1 + t2p2 + · · · .

Using this representation, we see that

1. PX(0) := limt→0+ PX(t) = p0;

2. PX(1) = 1;

3. P
(k)
X (t) = k!pk +

∑∞
j=1

(k+j)!
j!

tjpk+j .

Using the third property, we see that the pgf of X can be used to generate its pmf:

Theorem 5.3 Consider a discrete random variable X taking values in N0. For any
k ∈ N0,

pk =
P

(k)
X (0)

k!
.

Example 5.1 Find the pgf of the random variable X in Example 3.3.
Solution:
The pgf of X is given by

PX(t) = p0 + p1t
1 + p3t

3 + p6t
6 = 0.2 + 0.4t+ 0.1t3 + 0.3t6, t ∈ R.

Example 5.2 Let X be a discrete random variable taking values in N0 = {0, 1, 2, . . . }.
Let λ > 0 be a parameter. Suppose that the pgf of X is given by

PX(t) = eλ(t−1), t ∈ R.

(a) Calculate pX(5) = P(X = 5).
(b) Calculate Var[X].
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Solution:
(a) It is easy to see that

P
(k)
X (t) = λkeλ(t−1).

Hence,

pX(5) =
λ5e−λ

5!
=

λ5e−λ

120
.

(b) We compute Var[X] by the mfg of X. Note that

MX(t) = PX(e
t) = eλ(e

t−1).

Using this, we have

M ′
X(t) = λeteλ(e

t−1) ⇒ M ′
X(0) = E[X] = λ,

M ′′
X(t) = λeteλ(e

t−1) + λ2e2teλ(e
t−1) ⇒ M ′′

X(0) = E[X2] = λ+ λ2.

Therefore,
Var[X] = E[X2]− E2[X] = λ+ λ2 − λ2 = λ.

6 Joint Distributions
In this section, we shall discuss the distribution of a number of random variables collec-
tively.

6.1 Bivariate Distributions

Let X and Y be two random variables. The joint distribution of X and Y is the probability
distribution of all possible pairs of outcomes (X, Y ). In the sequel, we let Supp(X) and
Supp(Y ) be the support of X and Y , respectively,

• If X and Y are both discrete random variables, we can describe the distribution of
(X, Y ) by the joint probability mass function:

pX,Y (j, k) = pj,k = P(X = j, Y = k),

such that

1. 0 ≤ pj,k ≤ 1;

2.
∑

j

∑
k pj,k = 1.
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For any A ⊂ R× R, the probability that the pair (X, Y ) is in A is given by

P((X, Y ) ∈ A) =
∑

(j,k)∈A

pj,k.

• If X and Y are both continuous random variables, we can describe the distribution
of (X, Y ) by the joint probability density function:

fX,Y (x, y),

such that

1. fX,Y (x, y) ≥ 0 for any x, y ∈ R;

2.
∫∞
−∞

∫∞
−∞ fX,Y (x, y)dxdy = 1.

For any A ⊂ R× R, the probability that the pair (X, Y ) is in A is given by

P((X, Y ) ∈ A) =

∫ ∫
(x,y)∈A

fX,Y (x, y)dxdy

The standalone distribution of X (or Y ), i.e., the marginal distribution, can be obtained
from their joint distribution:

• If X and Y are both discrete random variable with joint pmf, the marginal pmfs can
be obtained as follows:

pX(x) =
∑

y∈Supp(Y )

pX,Y (x, y), pY (y) =
∑

x∈Supp(X)

pX,Y (x, y).

• If X and Y are both continuous random variable with joint pdf fX,Y , we can obtain
the marginal pdfs as follows:

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy, fY (y) =

∫ ∞

−∞
fX,Y (x, y)dx.

Like univariate random variables, we can define the joint cdf of the pair (X, Y ) which char-
acterizes the joint distribution.

Definition 6.1 The joint cdf of (X, Y ) is defined as

FX,Y (x, y) := P(X ≤ x, Y ≤ y).
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Remark 6.1. For multivariate random variables, P(X > x, Y > y) ̸= 1 − FX,Y (x, y). By
inclusion-exclusion, the correct relationship is given by

P(X > x, Y > y) = 1− (FX(x) + FY (y)− FX,Y (x, y)).

Given a function g : R2 → R, we can compute the expected value of g(X, Y ) as follows:

E[g(X, Y )] =


∑
x

∑
y

g(x, y)pX,Y (x, y), if X, Y are discrete;∫ ∞

−∞

∫ ∞

−∞
g(x, y)fX,Y (x, y)dxdy, if X, Y are continuous.

One way to measure the dependence of X and Y is to compute their covariance, and the
correlation coefficient :

Definition 6.2 1. The covariance of X and Y is defined as

Cov(X, Y ) := E[(X − µX)(Y − µY )] = E[XY ]− µXµY ,

where µX = E[X] and µY = E[Y ].
2. The (Pearson) correlation coefficient of X and Y is defined as

ρX,Y :=
Cov(X, Y )

σXσY

,

where σX and σY are the standard deviations of X and Y , respectively.

Remark 6.2.

1. The covariance and the correlation coefficient measure the linear dependence of X and
Y .

2. By the Cauchy–Schwarz inequality, we must have −1 ≤ ρX,Y ≤ 1;

3. If ρX,Y = 1 (resp. −1), then there exists a > 0 (resp. a < 0), and b ∈ R, such that
Y = aX + b.

6.2 Multivariate Distributions

The notion of joint distributions can be generalized to more than two random variables.
Let {Xi}ni=1 = {X1, X2, . . . , Xn} be a collection of random variables (a.k.a. random vector).
Depending on the support of the {Xi}ni=1, the joint distribution of the random vector can be
discussed as follows:
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• If the distribution of each Xi is discrete, we can characterize the joint distribution by the
joint pmf :

pX1,...,Xn(x1, . . . , xn) = P(X1 = x1, . . . , Xn = xn).

• If the distribution of each Xi is continuous, we can characterize the joint distribution by
the joint pdf :

fX1,...,Xn(x1, . . . , xn).

• In either case, we can define the joint cdf as:

FX1,...,Xn(x1, . . . , xn) = P(X1 ≤ x1, . . . , Xn ≤ xn).

6.3 Conditional Distributions

If X and Y are dependent of each other, the additional knowledge of one variable will change
the distribution of the other. This can be described by the conditional distribution, which
can be defined under a similar spirit as conditional probabilities in Definition 2.1.

The conditional distribution of X given Y , denoted by X|Y , can be characterized as
follows.

1. If X and Y are discrete random variables:

• The conditional pmf of X given Y is defined as

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
=

P(X = x, Y = y)

P(Y = y)
.

2. If X and Y are continuous random variables:

• the conditional pmf of X given Y is defined as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
.

Given that Y = y, we write X|Y = y as the conditional distribution of X given Y = y. It
is a distribution of X!

Like independence of two events, if the knowledge of Y does not change the distribution of
X, we say that X and Y are independent.

Definition 6.3 The random variables X and Y are said to be independent , denoted
by X ⊥⊥ Y , if

FX,Y (x, y) = FX(x)FY (y).
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If X, Y are both discrete or both continuous, we can also define independence of X and Y
as follows:

• If X and Y are both discrete random variables, then X ⊥⊥ Y iff

pX,Y (x, y) = pX(x)pY (y), ∀x ∈ Supp(X), y ∈ Supp(Y ).

If pY (y) > 0, this relation can also be written as pX|Y (x|y) = pX(x), i.e., the condi-
tional pmf of X|Y = y is just pX , which implies the knowledge of Y does not change
the distribution of X.

• If X and Y are both continuous random variables, then X ⊥⊥ Y iff

fX,Y (x, y) = fX(x)fY (y), ∀x ∈ Supp(X), y ∈ Supp(Y ).

If fY (y) > 0, this relation can also be written as fX|Y (x|y) = fX(x).

Proposition 6.3 Let X, Y be two random variables, and f, g be two functions such that
g(X) and h(Y ) are integrable. If X ⊥⊥ Y ,

E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Proof. Since X ⊥⊥ Y , we have fX,Y (x, y) = fX(x)fY (y). Hence,

E[g(X)h(Y )] =

∫ ∞

−∞

∫ ∞

−∞
g(x)h(y)fX(x)fY (y)dxdy

=

(∫ ∞

−∞
g(x)fX(x)dx

)(∫ ∞

−∞
h(y)fY (y)dy

)
= E[g(X)]E[h(Y )].

As an immediate consequence of Proposition 6.3, if X ⊥⊥ Y , Cov(X, Y ) = 0. However,
the converse is not true: Cov(X, Y ) = 0 does NOT imply X ⊥⊥ Y ; see the following
example.
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Example 6.1 Let X be a discrete random variable with pmf pX(−1) = 0.4, pX(0) = 0.2,
and pX(1) = 0.4. Define Y := 1{X=0}.

(a) Find the pmf of Y , and the joint pmf of (X, Y ). Is X ⊥⊥ Y ?
(b) Compute Cov(X, Y ).

Solution:
(a) Y is a discrete variable with only two values, 1 or 0. Y = 1 if X = 0 with probability

pX(0) = 0.2; Y = 0 if X ̸= 0 with probability 1− pX(0) = 0.8. Hence, the pmf of
Y is pY (0) = 0.2, and pY (1) = 0.8.
To find the joint pmf of (X, Y ), notice that X = 0 implies Y = 1, and X ̸= 0
implies Y = 0. The only possible outcomes are thus (X, Y ) = (0, 1), (−1, 0) and
(1, 0). The joint pmf is thus

pX,Y (0, 1) = pX(0) = 0.2, pX,Y (−1, 0) = pX(−1) = 0.4, pX,Y (1, 0) = pX(1) = 0.4.

Notice that
pX(1)pY (1) = 0.4× 0.8 = 0.32 ̸= 0 = pX,Y (1, 1).

Hence, X and Y are not independent.
(b) Notice that E[X] = 0. Also, P(XY = 0) = 1, which implies E[XY ] = 0. Hence,

Cov(X, Y ) = 0.

The notion of independence can be extended to a random vector {Xi}ni=1.

Definition 6.4 A collection of random variables {Xi}ni=1 is said to be mutually inde-
pendent if

FX1,...,Xn(x1, . . . , xn) =
n∏

i=1

FXi
(xi).

Remark 6.4.

1. If each Xi is discrete, {Xi}ni=1 is mutually independent if its pmf satisfies the following:

pX1,...,Xn(x1, . . . , xn) =
n∏

i=1

pXi
(xi).

2. If each Xi is continuous, {Xi}ni=1 is mutually independent if its pdf satisfies the
following:

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi
(xi).
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3. The notion of mutual independence should not be confused with pairwise indepen-
dence . The collection {Xi}ni=1 is pairwise independent if Xi ⊥⊥ Xj for any i ̸= j. In
general, mutual independence implies pairwise independence, but NOT vice verse.

4. If {Xi}ni=1 is mutually independent, and each Xi has the same distribution, we say
that the collection is independent and identically distributed (i.i.d.).

7 Conditional Expectations
In this last section of Chapter 1, we review the notion of conditional expectations, which is
fundamental in studying mixing, collective risk model, and credibility theory. We will define
conditional expectations depending on whether the given knowledge is an event or a random
variable.

7.1 Conditional Expectation Given an Event

Definition 7.1 Let X be a random variable, and A ⊂ Ω be an event with P(A) > 0.
The conditional expectation of X given A is defined as

E[X|A] = E[X1A]

P(A)
=


1

P(A)
∑
x∈A

xP(X = x), if X is discrete;

1

P(A)

∫
A

xfX(x)dx, if X is continuous.

From Definition 7.1, we see that E[X|A] is a real number. Since we know that A has
occurred, when computing the expected value of X, we are only counting those possible
values x which overlaps with A, i.e., E[X1A] in the numerator. The denominator P(A) is
the numeraire which accounts for the fact that we are confining ourselves to the given set
A.

Example 7.1 Suppose that X is a continuous random variable with pdf

fX(x) = λe−λx, x > 0,

where λ > 0 is a constant. For any constant d > 0, compute E[X|X > d].
Solution:
First, we need to compute P(X > d) :

P(X > d) =

∫ ∞

d

λe−λxdx = e−λd.
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On the other hand,

E[X1{X>d}] =

∫ ∞

d

λxe−λxdx = e−λd

(
d+

1

λ

)
.

Therefore,

E[X|X > d] =
E[X1{X>d}]

P(X > d)
=

e−λd
(
d+ 1

λ

)
e−λd

= d+
1

λ
.

Quite often, we are interested in the expected value of X given the value of another related
random variable, that is, E[X|A], where A = {Y = y}. If X, Y are discrete, we have
P(A) = P(Y = y), and E[X1{Y=y}] =

∑
x xpX,Y (x, y) (show that!). However, when Y is

continuous, P(Y = y) = 0. In that case, we define the conditional expectation using the
conditional density function.

Definition 7.2 Let X and Y be random variables. The conditional expectation of
X given Y = y is defined as

E[X|Y = y] =


∑
x

xpX|Y (x|y), if X, Y are discrete;∫ ∞

−∞
xfX|Y (x|y)dx, if X, Y are continuous.

Example 7.2 Consider the random variables X and Y in Example 6.1. Find E[X|Y = y]
for y = 0 and 1.
Solution:
If Y = 1, we must have X = 0. Hence, E[X|Y = 1] = 0. If Y = 0, we know that X has
equal probability of being −1 and 1. Hence, E[X|Y = 0] = −1× 0.5 + 1× 0.5 = 0.

We can also define the conditional variance of X given Y = y.

Definition 7.3 The conditional variance of X given Y = y is defined as

Var[X|Y = y] = E
[
(X − E[X|Y = y])2|Y = y

]
= E[X2|Y = y]− E2[X|Y = y].

When the event Y = y is given, the expected value of X would become E[X|Y = y]. The
conditional variance is thus defined as the conditional expectation of (X − E[X|Y = y])2

(instead of (X − E[X])2) given Y = y.
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7.2 Conditional Expectation Given a Random Variable

In Definition 7.2, we defined the conditional expectation E[X|Y = y], which evaluates the
average value of X given that Y = y. As the possible outcome y of Y varies, the value
E[X|Y = y] will also change accordingly. Hence, one can view the mapping E[X|Y = y]
as a function of y. Let h(y) := E[X|Y = y]. Then, the random variable h(Y ) is called the
conditional expectation of X given Y :

Definition 7.4 Let X, Y be random variables. Define h(y) := E[X|Y = y]. Then, the
conditional expectation of X given Y is the random variable

E[X|Y ] := h(Y ).

Remark 7.1.

1. E[X|Y ] = h(Y ) is a random variable.

2. E[X|Y ] = h(Y ) is a function of Y , instead of X.

3. E[X|Y ] is the “best estimate" of the random variable X based on Y in the L2-sense.

4. If X ⊥⊥ Y , E[X|Y = y] = E[X]. Hence h(y) = E[X] is a constant function, and
E[X|Y ] = E[X].

5. If X = g(Y ), i.e., X is some transformation of Y , then E[X|Y ] = g(Y ) = X. In other
words, once we know Y , the best estimate of X is just X itself, since we can readily
compute X by X = g(Y ).

6. In credibility theory, E[X|Y ] is also called the hypothetical mean.

The following is a very important property concerning conditional expectations.

Theorem 7.2 (Law of iterated expectations/Tower property) For any random
variables X and Y , we have

E [E[X|Y ]] = E[X].

Remark 7.3. In some textbooks, the law of iterated expectations is sometimes written as

E[X] = EY [EX [X|Y ]] .

Proof. Using the definition of conditional expectations and Fubini’s theorem,

E[E[X|Y ]] = E[h(Y )] =

∫ ∞

−∞
h(y)fY (y)dy

=

∫ ∞

−∞
E[X|Y = y]fY (y)dy
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=

∫ ∞

−∞

(∫ ∞

−∞
xfX|Y (x|y)dx

)
fY (y)dy

=

∫ ∞

−∞

∫ ∞

−∞
xfX|Y (x|y)fY (y)dxdy

=

∫ ∞

−∞

∫ ∞

−∞
xfX,Y (x, y)dxdy

=

∫ ∞

−∞
x

(∫ ∞

−∞
fX,Y (x, y)dy

)
dx

=

∫ ∞

−∞
xfX(x)dx = E[X].

Definition 7.5 The conditional variance of X given Y is defined as

Var[X|Y ] = E
[
(X − E[X|Y ])2|Y

]
= E[X2|Y ]− E2[X|Y ].

The (unconditional) variance of X can be decomposed into conditional ones as follows.

Theorem 7.4 (Law of total variance)

Var[X] = E [Var[X|Y ]] + Var [E[X|Y ]] .

Var[X] is the sum expected value of the conditional variance, and the variance of the con-
ditional expectation. In credibility theory, the conditional variance is also called the process
variance.

Proof. By the law of iterated expectations, we have

Var[X] = E[(X − µ)2]

= E
[
E
[
(X − µ)2|Y

]]
= E

[
E[X2|Y ]− 2µE[X|Y ] + µ2

]
= E[E[X2|Y ]− E2[X|Y ]] + E

[
E2[X|Y ]− 2µE[X|Y ] + µ2

]
= E[Var[X|Y ]] + E

[
E2[X|Y ]

]
− 2µ2 + µ2

= E[Var[X|Y ]] + E[E2[X|Y ]]− µ2

= E[Var[X|Y ]] + Var[E[X|Y ]],

where the fifth line again follows from the law of iterated expectations, and the last line
follows from the observation that

Var[E[X|Y ]] = E[E2[X|Y ]]− E2[E[X|Y ]] = E[E2[X|Y ]]− µ2.
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Example 7.3 Let X be the random variable of a loss (in thousands) from an insurance
policy. Given the risk factor Θ, it is known that the pdf of X is given by

fX|Θ(x|θ) =
1

2θ
e−

x
2θ , x > 0.

It is known that the risk factor Θ itself is a random variable with pmf

pΘ(1) = 0.6, pΘ(5) = 0.3, pΘ(10) = 0.1.

(a) Find the pmf of E[X|Θ].
(b) Calculate E[X].
(c) Find the pmf of Var[X|Θ].
(d) Calculate Var[X].

Solution:
(a) For θ = 1, 5 and 10, we know that

E[X|Θ = θ] =

∫ ∞

0

x

2θ
e−

x
2θ dx = 2θ.

Hence, the pmf of E[X|Θ] is given by

P (E[X|Θ] = y) =


0.6, if y = 2;

0.3, if y = 10;

0.1, if y = 20.

(b) By the law of iterated expectation,

E[X] = E [E[X|Θ]]

= E[X|Θ = 1]pΘ(1) + E[X|Θ = 5]pΘ(5) + E[X|Θ = 10]pΘ(10)

= 2× 0.6 + 10× 0.3 + 20× 0.1

= 6.2.

(c) For Θ = θ,

Var[X|Θ = θ] = E
[
X2|Θ = θ

]
− E2[X|Θ = θ] = E

[
X2|Θ = θ

]
− (2θ)2,

where
E[X2|Θ = θ] =

∫ ∞

0

x2

2θ
e−

x
2θ dx = 8θ2.

Hence, Var[X|Θ = θ] = 8θ2 − 4θ2 = 4θ2. The pmf of Var[X|Θ] is thus
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P (Var[X|Θ] = y) =


0.6, if y = 4;

0.3, if y = 100;

0.1, if y = 400.

(d) We compute Var[X] by the conditional variance formula (Theorem 7.4). From (a),
we can compute Var[E[X|Θ]]:

Var[E[X|Θ]] = E
[
(E[X|Θ])2

]
− (E [E[X|Θ]])2

= 22 × 0.6 + 102 × 0.3 + 202 × 0.1− E2[X]

= 72.4− 6.22 = 33.96.

On the other hand, by (c),

E[Var[X|Θ]] = 4× 0.6 + 100× 0.3 + 400× 0.1 = 72.4.

Therefore, Var[X] = E[Var[X|Θ]] + Var[E[X|Θ]] = 72.4 + 33.96 = 106.36.
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